
     Installation guide for Autotrace 

        -*- text -*- 

Index of this file: 

 

 1. Basic Installation 

 2. ImageMagick related issues 

 3. Pstoedit related issues 

 

1. Basic Installation 

===================== 

 

   These are generic installation instructions. 

 

   The `configure' shell script attempts to guess correct values for 

various system-dependent variables used during compilation.  It uses 

those values to create a `Makefile' in each directory of the package. 

It may also create one or more `.h' files containing system-dependent 

definitions.  Finally, it creates a shell script `config.status' that 

you can run in the future to recreate the current configuration, a file 

`config.cache' that saves the results of its tests to speed up 

reconfiguring, and a file `config.log' containing compiler output 

(useful mainly for debugging `configure'). 

 

   If you need to do unusual things to compile the package, please try 

to figure out how `configure' could check whether to do them, and mail 

diffs or instructions to the address given in the `README' so they can 

be considered for the next release.  If at some point `config.cache' 

contains results you don't want to keep, you may remove or edit it. 

 

   The file `configure.in' is used to create `configure' by a program 

called `autoconf'.  You only need `configure.in' if you want to change 

it or regenerate `configure' using a newer version of `autoconf'. 

 

The simplest way to compile this package is: 

 

  1. `cd' to the directory containing the package's source code and type 

     `./configure' to configure the package for your system.  If you're 

     using `csh' on an old version of System V, you might need to type 

     `sh ./configure' instead to prevent `csh' from trying to execute 

     `configure' itself. 

 

     Running `configure' takes awhile.  While running, it prints some 

     messages telling which features it is checking for. 

 

  2. Type `make' to compile the package. 

 

  3. Optionally, type `make check' to run any self-tests that come with 

     the package. 

 

  4. Type `make install' to install the programs and any data files and 

     documentation. 

 

  5. You can remove the program binaries and object files from the 

     source code directory by typing `make clean'.  To also remove the 



     files that `configure' created (so you can compile the package for 

     a different kind of computer), type `make distclean'.  There is 

     also a `make maintainer-clean' target, but that is intended mainly 

     for the package's developers.  If you use it, you may have to get 

     all sorts of other programs in order to regenerate files that came 

     with the distribution. 

 

Compilers and Options 

===================== 

 

   Some systems require unusual options for compilation or linking that 

the `configure' script does not know about.  You can give `configure' 

initial values for variables by setting them in the environment.  Using 

a Bourne-compatible shell, you can do that on the command line like 

this: 

     CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure 

 

Or on systems that have the `env' program, you can do it like this: 

     env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure 

 

Compiling For Multiple Architectures 

==================================== 

 

   You can compile the package for more than one kind of computer at the 

same time, by placing the object files for each architecture in their 

own directory.  To do this, you must use a version of `make' that 

supports the `VPATH' variable, such as GNU `make'.  `cd' to the 

directory where you want the object files and executables to go and run 

the `configure' script.  `configure' automatically checks for the 

source code in the directory that `configure' is in and in `..'. 

 

   If you have to use a `make' that does not supports the `VPATH' 

variable, you have to compile the package for one architecture at a time 

in the source code directory.  After you have installed the package for 

one architecture, use `make distclean' before reconfiguring for another 

architecture. 

 

Installation Names 

================== 

 

   By default, `make install' will install the package's files in 

`/usr/local/bin', `/usr/local/man', etc.  You can specify an 

installation prefix other than `/usr/local' by giving `configure' the 

option `--prefix=PATH'. 

 

   You can specify separate installation prefixes for 

architecture-specific files and architecture-independent files.  If you 

give `configure' the option `--exec-prefix=PATH', the package will use 

PATH as the prefix for installing programs and libraries. 

Documentation and other data files will still use the regular prefix. 

 

   In addition, if you use an unusual directory layout you can give 

options like `--bindir=PATH' to specify different values for particular 

kinds of files.  Run `configure --help' for a list of the directories 



you can set and what kinds of files go in them. 

 

   If the package supports it, you can cause programs to be installed 

with an extra prefix or suffix on their names by giving `configure' the 

option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'. 

 

Optional Features 

================= 

 

   Some packages pay attention to `--enable-FEATURE' options to 

`configure', where FEATURE indicates an optional part of the package. 

They may also pay attention to `--with-PACKAGE' options, where PACKAGE 

is something like `gnu-as' or `x' (for the X Window System).  The 

`README' should mention any `--enable-' and `--with-' options that the 

package recognizes. 

 

   For packages that use the X Window System, `configure' can usually 

find the X include and library files automatically, but if it doesn't, 

you can use the `configure' options `--x-includes=DIR' and 

`--x-libraries=DIR' to specify their locations. 

 

Specifying the System Type 

========================== 

 

   There may be some features `configure' can not figure out 

automatically, but needs to determine by the type of host the package 

will run on.  Usually `configure' can figure that out, but if it prints 

a message saying it can not guess the host type, give it the 

`--host=TYPE' option.  TYPE can either be a short name for the system 

type, such as `sun4', or a canonical name with three fields: 

     CPU-COMPANY-SYSTEM 

 

See the file `config.sub' for the possible values of each field.  If 

`config.sub' isn't included in this package, then this package doesn't 

need to know the host type. 

 

   If you are building compiler tools for cross-compiling, you can also 

use the `--target=TYPE' option to select the type of system they will 

produce code for and the `--build=TYPE' option to select the type of 

system on which you are compiling the package. 

 

Sharing Defaults 

================ 

 

   If you want to set default values for `configure' scripts to share, 

you can create a site shell script called `config.site' that gives 

default values for variables like `CC', `cache_file', and `prefix'. 

`configure' looks for `PREFIX/share/config.site' if it exists, then 

`PREFIX/etc/config.site' if it exists.  Or, you can set the 

`CONFIG_SITE' environment variable to the location of the site script. 

A warning: not all `configure' scripts look for a site script. 

 

Operation Controls 

================== 



 

   `configure' recognizes the following options to control how it 

operates. 

 

`--cache-file=FILE' 

     Use and save the results of the tests in FILE instead of 

     `./config.cache'.  Set FILE to `/dev/null' to disable caching, for 

     debugging `configure'. 

 

`--help' 

     Print a summary of the options to `configure', and exit. 

 

`--quiet' 

`--silent' 

`-q' 

     Do not print messages saying which checks are being made.  To 

     suppress all normal output, redirect it to `/dev/null' (any error 

     messages will still be shown). 

 

`--srcdir=DIR' 

     Look for the package's source code in directory DIR.  Usually 

     `configure' can determine that directory automatically. 

 

`--version' 

     Print the version of Autoconf used to generate the `configure' 

     script, and exit. 

 

`configure' also accepts some other, not widely useful, options. 

 

2. ImageMagick related issues 

============================= 

 

If you use Red Hat Linux 7.2 to build autotrace with ImageMagick rpm, 

you will get a trouble something like: 

 

    /bin/sh ./libtool --mode=link gcc  -g -O2  -o autotrace  atou.o 

main.o ... 

    libtool: link: cannot find the library `/usr/lib/libxml2.la' 

    gmake: *** [autotrace] Error 1 

 

The reasons of thie trouble are 1. libMagick.la is broken; 

and 2. libxml2.so does not exist. There are two ways to avoid 

this trouble. 

 

1. Build autotrace without ImageMagick. 

   Run configure with "--withoud-magick" option(then run make clean; 

make). 

   However, you lost input functions that use ImageMagick. 

 

2. Hack the broken files. 

   Replace "/usr/lib/libxml2.la" with -lxml2 in ImageMagick.la then 

   Make a symbolic link, /usr/lib/libxml2.so, that referees 

/usr/lib/libxml2.so.2. 

   If you don't understand what I write, you should not do. 



 

If you use Red Hat Linux 8.0 to build autotrace with ImageMagick rpm, 

you will get a trouble something like in configure time: 

 

    checking for Magick-config... Magick-config 

    checking magick/api.h usability... no 

    checking magick/api.h presence... no 

    checking for magick/api.h... no 

    configure: WARNING: *** Magick-config is found but magick/api.h is 

not found in -I/usr/X11R6/include/X11/magick -D_REENTRANT -

D_FILE_OFFSET_BITS=64 -I/usr/X11R6/include -I/usr/X11R6/include/X11 -

I/usr/include/freetype2 -I/usr/include/libxml2 *** 

    configure: WARNING: *** Check Magick-config.                                                   

*** 

    configure: WARNING: *** ImageMagick input handler is disabled.                                 

*** 

 

in spite of following rpm -q results: 

 

    [jet@chuf autotrace]$ rpm -q ImageMagick 

    ImageMagick-5.4.7-5 

    [jet@chuf autotrace]$ rpm -q ImageMagick-devel 

    ImageMagick-devel-5.4.7-5 

 

I guess some of header files are missed in ImageMagick-devel. 

I recommend you to install ImageMagick from tar.gz. file. 

 

 

Pstoedit related issues 

======================= 

 

If you are using pstoedit-3.32, pstoedit checking in configure of 

autotrace runs TWICE. Ignore the warning message of first checking. 

If you are using pstoedit-3.33 or higher, pstoedit checking runs only 

once.  If you got a trouble to build autotrace with pstoedit, you can 

disable to use pstoedit with giving --without-pstoedit to configure of 

autotrace. Is you want to use pstoedit anyway linked with autotrace, 

let me(Masatake YAMATO<yamato@redhat.com> or autotrace mailing list) know 

following informations: 

 

    your operating system name and version 

    autotrace version 

    pstoedit version 

    value of $LD_LIBRARY_PATH 

    value of $PATH 

    options given to configure of autotrace 

    options given to configure of pstoedit 

    output of configure of autotrace 

    output of configure of pstoedit 

    config.log of configure of autotrace 

    config.log of configure of pstoedit 

    Makefile of autotrace if generated 

    src/Makefile of pstoedit 

    output of pstoedit-config --libs 



    output of pstoedit-config --cflags 

    output of autotrace-config --libs 

    output of autotrace-config --cflags 

    path for pstoedit-config 

    path for autotrace-config 

    path for libautotrace.so 

    path for libpstoedit.so 

    if there is a compile farm on that the same OS as you use 

 

(Of couse, I(Masatake YAMATO) cannot promise anything even  

if you sent me above informations.) 

 


